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Abstract

Childhood mortality re�ects the overall health and development in
a country. Mortality rates in developing countries are not only in�u-
enced by socio-economic, demographic and health variables; they also
vary signi�cantly across regions and districts. This study analyzes
under-�ve mortality in Nigeria using �exible geo-additive Bayesian
survival model, which enables the measurement of small-area district-
speci�c spatial e¤ects simultaneously with possibly nonlinear or time-
varying e¤ects of other predictors. Inference is fully Bayesian and is
based on Markov Chain Monte Carlo (MCMC) simulation. Data for
the study come from the 2003 Nigeria Demographic and Health Sur-
vey (NDHS) and includes 6029 children born between 1999 and 2003.
Results indicate that district-level socio-economic characteristics are
important determinants of under-�ve mortality. More importantly, we
�nd district clustering of under-�ve mortality, which indicates the im-
portance of spatial e¤ects. The presentation of this clustering through
maps facilitates visuality and highlights di¤erentials across geograph-
ical areas that would, otherwise, be overlooked in traditional data-
analytic methods.
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1 Introduction

Childhood mortality is an important indicator of overall health and develop-
ment in a country. It is the result of a complex interplay of determinants at
many levels. As such some studies have documented the association of mater-
nal factors (Caldwell, 1979; Cleland & van Ginneken, 1988), socio-economic
factors (Castro-Leal et al. 1999; Wagsta¤, 2001), as well as environmental
factors (Wolfe & Behrman, 1982; Lee et al. 1997) with childhood mortality.
However, only a few studies have incorporated environmental factors that are
spatial in nature and derived from geographic databases, such as distances
from households or communities (Watson et al. 1997).
While the commonly used approaches, such as correlation coe¢ cients and

regression analysis may produce statistical outcomes and measures of associa-
tion in a particular location, these relationships cannot be readily generalized
for other locations within a country. Spatial analysis could be de�ned as a
quantitative data analysis which focuses on the role of space and relies explic-
itly on spatial variables in order to explain or predict the phenomenon under
investigation (Cressie, 1993; Chou, 1997). It tests theories which stress that
the location of an individual in�uences social attitudes and behaviour, and
that observed social phenomena are not distributed in a spatially random
fashion (Weeks, 2004).
Studies of childhood mortality in developing countries using aggregated

data and methodologies that ignore spatial dimensions run the risk of ex-
plaining very little of the variations in mortality rates as well as masking
spatial variations. For instance, results of the 2003 Nigeria Demographic
and Health Survey (NDHS), disaggregated by geopolitical zones, shows that
the under-�ve mortality rate for the period 1999-2003 at the national level
was 218 deaths per 1000 live-births, while the corresponding �gures for the
6 geopolitical zones was 172 (North Central), 270 (North East), 264 (North
West), 92 (South East), 187 (South South), and 101 (South West). Further
stra�cation of the under-�ve mortality rates by districts (states) as displayed
in Table 1, reveals wide variations between districts within the same geopolit-
ical region. Such variations would be �hidden�in the overall picture of crude
mortality rate for that region or states and, thus, prompt the importance of
incorporating a spatial diemension in the analyis of under-�ve mortality.
This study is intended to account simultaneously for spatial and time-

varying e¤ects on childhood mortality by employing a geo-additive Bayesian
model with dynamic and spatial extensions of discrete-time survival model.
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Temporal and spatial variation in the determinants of childhood mortality,
as well as any associations between risk factors and childhood mortality in
the presence of spatial correlation. According to Weeks (2004), ignoring this
correlation would lead to an underestimation of the variance of the e¤ects
of risk factors. The impact of some determinant factors of child survival is
allowed to vary over time, as well as allowing for non-linear e¤ects of some
covariates on child survival. The model introduces appropriate smoothness
priors for spatial and non-linear e¤ects, and uses Markov Chain Monte Carlo
simulation techniques (Gelfand and Smith, 1990; Smith and Roberts, 1993)
to estimate the model parameters. The models are subsequently used to
examine spatial variation in childhood mortality rates in Nigeria, and explore
district-level clustering of mortality rates across both space and time. Figure
1 (a) shows current geopolitical districts of Nigeria. Due to lack of spatial
data including for the �ve new states, however, this study will be based on
the older 31 states (i.e. states created before 1996).
(A paragraph on the organization of the paper may be included here)

2 Study Area and Study Population

Nigeria, with a 2006 population of 140 million people, is the most popu-
lous country in Africa (Onuah, 2007). It is also the tenth largest country
by population in the World. The country lies on the west coast of Africa
between 4 and 14� North latitude and 2 and 15� East longitude, and is bor-
dered by Benin, Niger, Chad, Cameroon, and the Gulf of Guinea. It has
a landmass extending over 923,768 square kilometres and is located on the
eastern terminus of the bulge of West Africa (Population Resource Centre,
2000). An average density of approximately 124 persons per square kilome-
ter (Ali-Akpajiak and Pyke, 2003) makes Nigeria one of the most densely
populated countries in the World. The spatial distribution of the population
is uneven, with some areas of the country sparsely inhabited while other ar-
eas densely populated. With the exception of Lagos, which has the highest
population density in the country, the South East of Nigeria has the highest
densities. Sixty four percent of the population is concentrated in the rural
areas (Ali-Akpajiak and Pyke, 2003). Nigeria is made up of 36 states (dis-
tricts) and a Federal Capital Territory at Abuja. The 36 states are grouped
into six geopolitical zones (regions). The mean temperature ranges between
25 and 40 �C, and rainfall ranges between 2650 mm in the Southeast and less
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than 600 mm in some parts of northern Nigeria that lie mainly in the Sahara
desert. These climatic di¤erences give rise to both vegetational di¤erences
ranging from mangrove swamp forest in the Niger delta and Sahel grassland
in the North, and di¤erent soil conditions. This results in a variation in agri-
cultural products and natural resources in the di¤erent parts of Nigeria. A
map of Nigeria indicating the geographical location of the states (districts)
is given in Figure 1.
(A paragraph that connects this section well to the next section is needed

here)

3 Geo-Additive Bayesian Discrete-Time Sur-
vival Model

3.1 The basic model

Let T denote a discrete survival time where t 2 f1; : : : ; q + 1g represents
the tth month after birth and let x?t = (x1; : : : ; xt) denote the history of a
covariate up to month t.
The discrete-time conditional probability of death at month t is then

given by:
�(t; x?t ) = pr(T = tjT � t; x?t ); t = 1; : : : ; q: (1)

Survival information is recorded by (ti; �i); i 2 f1; : : : ; Ng, where ti 2 f1; : : : ; 60g
denotes the child�s observed survival time in months, and �i is a censoring
indicator with value 1 if child i died, and 0 if it is still alive. In other words,
ti represents either the age of the child at time of death (when �i = 1), or
the age of the child at date of interview (when �i = 0).
We assume noninformative censoring in the sense of Lagakos (1979), so

that the risk set Rt includes all individuals who are censored in interval
ending in t.
Let us now de�ne a binary event indicator yit fi 2 Rt; t = 1; : : : ; tig:

yit =

�
1 if t = ti and �i = 1
0 otherwise;

(2)

The death process of individual i can, then, be considered as a sequence
of binary �outcomes� - dying at age t (yit = 1) or surviving beyond age t
(yit = 0).
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Such formulation yields a sequence of 0s and 1s indicating survival histo-
ries of each child at the various time points.

3.2 Incorporating Fixed-, Time-varying and Spacial-
E¤ects

Parallel with the sequence of 0s and 1s, we can also have records on values of
relevant explanatory variables x?it = (xi1; : : : ; xit); i = 1; 2; :::. These variables
may be �xed over time such as sex; or may vary over time, such as breast-
feeding of a child at time t.
The indicator yit can be linked to the covariates x?it by an appropriate

link function for binary response model such as probit, logit or multinomial
link function, and a predictor �it(xit). Assuming that yit has a binomial
distribution and using a probit link function for i 2 Rt, the probability of
death for a child i is given by

�(�it) = pr(yit = 1jx?it): (3)

The usual form of the predictor is

�it = f0(t) +X
�
it� (4)

where the baseline e¤ect f0(t); t = 1; 2; : : : is an unknown, usually non-linear,
function of t to be estimated from data and � is the vector of �xed covariate
e¤ects. In parametric framework, the baseline hazard is often modelled by a
few dummy variables dividing the time-axis into a number of relatively small
segments or by some low-order polynomial. In practice, however, it is di¢ cult
to correctly specify such parametric functional forms for the baseline e¤ects
in advance. Nonparametric modelling based on some qualitative smoothness
restrictions o¤ers a more �exible framework to explore unknown patterns of
the baseline.
Restriction to �xed e¤ects alone might not be adequate because, in most

cases, we have covariates whose value may vary over time. The predictor
in (4) is, therefore, extended to a more �exible semiparametric model that
can accommodate time-varying e¤ects. If we further include another term
representing spatial e¤ects, this semiparametric predictor is given by

�it = f0(t) + f1(X) + f(t)Xit + fspat(si) +X
�
it�: (5)
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Here, f0(t) is the baseline function of time and f1 is a nonlinear e¤ect of met-
rical covariate X: The e¤ects, f(t); of the covariates in Xit are time-varying;
while X�

it comprises �xed covariates whose e¤ect is represented by the para-
meter vector �; and fspat is the nonlinear spatial component of, say, district
s (s = 1; : : : ; S), where the child lives. The spatial e¤ects fspat(si) may be
split-up further into spatially correlated (structured) and uncorrelated (un-
structured) e¤ects of the form fstr(si) + funstr(si): A rational behind this is
that a spatial e¤ect is a surrogate of many unobserved in�uential factors,
some of which may obey a strong spatial structure while others may only be
present locally.
Equations (4) and (5) are the basis of our analysis and will be referred,

henceforth, as constant �xed e¤ects model (M1) and geo-additive model
(M2), respectively.

3.3 The Estimation Process

Second-order random walk priors are used to smooth the functions f0, f1;
and f using the MCMC techniques implemented in BayesX (see, for instance,
Fahrmeir and Lang, 2001a; b; and Brezger, Kneib and Lang, 2002).
Let f = ff(1); : : : ; f(m);m � ng be a vector of corresponding function

evaluations at the observed values of x. Then, the general form of the prior
for f is

f j � 2 / exp
�
� 1

2� 2
f 0Kf

�
; (6)

where K is a penalty matrix that penalizes too abrupt jumps between neigh-
boring parameters. In most cases, K is rank de�cient and, hence, the prior
for f is improper.
In traditional approaches the smoothing parameter is equivalent to the

variance parameter � 2 which controls the trade o¤ between �exibility and
smoothness. A highly dispersed but proper hyperprior is assigned to � 2

in order to estimate the smoothness parameter simultaneously with f . A
proper prior for � 2 is required in order to obtain a proper posterior for f
(Hobert and Casella, 1996). If we choose an Inverse Gamma distribution
with hyperparameters a and b, (� 2 � IG(a; b)); then, a �rst- and second-
order random walk priors for f are de�ned by

f(t) = f(t� 1) + u(t); and f(t) = 2f(t� 1)� f(t� 2) + u(t); (7)
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respectively, with Gaussian errors u(t) � N(0; � 2) and di¤use priors f(1) /
const, or f(1) and f(2) / const, as initial values.
A �rst order random walk penalizes abrupt jumps f(t)�f(t�1) between

successive states and a second order random walk penalizes deviations from
the linear trend 2f(t� 1)� f(t� 2).
The trade o¤ between �exibility and smoothness of f is controlled by the

variance parameter � 2. The goal in our approach is to estimate the variance
parameter and the smoothing function simultaneously. This is achieved by
introducing an additional hyperprior for � 2 at a further stage of the hierarchy.
We choose a highly dispersed but proper Inverse Gamma prior, p(� 2) �
IG(a; b); with a = 1 and b = 0:005. In analogy, we also de�ne for the overall
variance �2 a highly dispersed Inverse Gamma prior.
For the spatially correlated or structured e¤ect, fstr(s), s = 1; : : : ; S, we

choose Markov random �eld priors common in spatial statistics (Besag, et
al. 1991) of the form

fstr(s) j fstr(r); r 6= s; � 2str � N
�P

r2@s fstr(r)

Ns
;
� 2str
Ns

�
; (8)

where Ns is the number of adjacent regions, and r 2 @s indicates that region
r is a neighbor of region s. Thus, the conditional mean of fstr(s) is an
unweighted average of function evaluations for neighboring regions. Again
the variance parameter � 2str controls the degree of smoothness.
For a spatially uncorrelated (unstructured) e¤ect, funstr, s = 1; : : : ; S,

common assumptions are that the parameters funstr(s), are i. i. d. Gaussian:

funstr(s) j � 2unstr � N(0; � 2unstr): (9)

In a fully Bayesian analysis, variance or smoothness parameters � 2j ; j = str;
unstr; are also considered as unknown and estimated simultaneously with the
corresponding unknown functions fj. Therefore, hyperpriors are assigned to
them in a second stage of the hierarchy by highly dispersed Inverse Gamma
distributions p(� 2j) � IG(aj; bj) with known hyperparameters aj and bj.
Standard choices for the hyperparameters are a = 1 and b = 0:005 or

a = b = 0:001. In our illustration, however, the results are not sensitive to
the choice of a and b, and the later choice is close to Je¤rey�s noninformative
prior.
Fully Bayesian inference is based on the posterior distribution of model

parameters whose form is not known. Therefore, MCMC sampling from full
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conditionals for nonlinear e¤ects, spatial e¤ects, �xed e¤ects and smooth-
ing parameters is used for posterior analysis. For the nonlinear and spatial
e¤ects, we apply the sampling scheme of Iterative Weighted Least Squares
(IWLS) implemented in BayesX (see Brezger, Kneib and Lang, 2002). This
is an alternative to the general Metropolis-Hastings algorithms based on con-
ditional prior proposals that was �rst suggested by Knorr-Held (1999) in the
context of state-space models as an extension to Gamerman (1997). A more
detailed related work is also given in Knorr-Held and Rue (2002).
An essential task in the model-building process is the comparison of a set

of plausible models, for example rating the impact of covariates and assessing
if their e¤ects are time-varying or not; or comparing geo-additive models with
simpler parametric alternatives. We adopt the measure of complexity and �t
suggested by Spiegelhalter et. al. (2002) for comparison and select the model
that takes all relevant structure into account while remaining parsimonious.
The Deviance Information Criteria (DIC) which may be used for model

comparison is de�ned as

DIC(M) = D(M) + pD: (10)

Thus, the posterior mean of the deviance D(M) is penalized by the e¤ective
number of model parameters pD. Models can be validated by analyzing the
DIC, which is smaller in models with covariates of high explanatory value.

3.4 Advantages of the Geo-additive Model

There are many potential advantages of the approach described above over
more conventional approaches like discrete-time Cox models with time-varying
covariates and �xed or random districts e¤ects; or standard 2-level multilevel
modelling with unstructured spatial e¤ects (Goldstein, 1999). In the conven-
tional models, it is assumed that the random components at the contextual
level (district in our case) are mutually independent. In practice, these ap-
proaches specify correlated random residuals (see, for instance, Langford et et
al., 1999) which is contrary to the assumption. Further, Borgoni and Billari
(2003) point out that the independence assumption has an inherent problem
of inconsistency. They argue that if the location of the event matters, it
makes sense to assume that areas close to each other are more similar than
areas that are far apart. Moreover, treating groups (in our case districts)
as independent is unrealistic and lead to poor estimates of the standard er-
rors. As Rabe-Heskesth and Everitt (2000) pointed out, standard errors for
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between-district factors are likely to be underestimated because we are treat-
ing observations from the same districts as independent, and thus increasing
the apparent sample size. On the contrary, standard errors for within district
factors are likely to be overestimated (see also Bolstad and Monda, 2001).
Since Demographic and Health Survey data is based on a random sample of
districts, they introduces a structured component. Such component allows
us to borrow strength from neighbors in order to cope with the posterior un-
certainty of the district e¤ect and obtain estimates for areas that may have
inadequate sample sizes or are not represented in the sample.
In an attempt to highlight the advantages of our approach in a spatial

context and examine the potential bias incurred when ignoring the depen-
dence between aggregated spatial areas, we shall �t several models with and
without the structured and random components in our illustration below.

4 Illustration: Spatial Modelling of Under-
�ve Mortality in Nigeria

4.1 Data set

Data from the 2003 Nigeria Demographic and Health Survey (NDHS) was
used in this study. The survey included 7620 women aged 15-49 years, and
all men aged 15-59 in a sub-sample of one-third (i.e. 2346) of the households.
The data in the present study contains 6029 children born within 5 years prior
to the survey (ca 1999-2003) coming from 3725 mothers who contributed
between 1 child and 6 children. Technical details of the survey have been
reported in the o¢ cial 2003 NDHS report (NPC, 2003). Of the 6029 children
843 children (14%) died before their �fth birthday while the rest were still
alive (censored) by the date of interview.
Each live birth and each subsequent child health outcome contains in-

formation on the household and each parent, thereby constituting the basic
analytic sample.

4.2 Speci�cation and measurement of variables

The indicator variable used in this study is:

yit =

�
1 : if child i dies in month t
0 : if child i survives beyond time t;

(11)
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and is linked to covariates as shown in the equations (3) - (5).
On the basis of previous studies, a selection of theoretically relevant vari-

ables was chosen as covariates of childhood mortality. These include:

� mab: mother�s age at birth of the child (in years) �assumed to have
nonlinear e¤ect;

� dobt: duration of breastfeeding - assumed to have time-varying e¤ect;

� dist: district (state) in Nigeria - spatial covariate;

� X: a vector of categorical covariates including:

� sex of the child (male or female),

� asset index (1st quntile, 2nd quitile, 3rd quintile, 4th quintile),

� place of residence (urban or rural),

�mother�s educational level (no education, at least primary),

� partner�s educational level (no education, at least primary),

� place of delivery (hospital, home/other),

� preceding birth interval (< 24 months, � 24 months),
� antenatal visits during pregnancy (at least one visit , no visit),

�marital status of mother (single, married)

� household size (small, medium, large)

The last levels of each covariate were selected as reference or baseline
levels. Descriptive statistics of covariates used in the analysis are shown in
Table 2.

4.3 Statistical method

An analysis and comparison of simpler parametric probit models, and probit
models with dynamic e¤ects, pr(yit = 1jx?it) = �(�it); was made for the
probability of dying in month t. In other words, the conditional probability
of a child dying at time t (given the child�s age in months, the district where
the child lived before death, and covariates in X above), is modeled with the
following predictors:
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M1 : �it = f0(t) +X
�
it�

M2 : �it = f0(t) + f1(mab) + f(t)Xit + funstr(dist) + fstr(dist) +X
�
it�

The �xed e¤ects in modelM1 include all �xed covariates described above.
Further, mother�s age at birth (mab) was split into two categories as shown
in Table 2, and duration of breastfeeding was included as dichotomous (0,
1) variable in Model 1. Model M2 which uses mother�s age at birth (mab)
as non-linear and duration of breastfeeding as time-varying covariate, will
be superior to model M1 because Model M2 accounts for the unobserved
heterogeneity that might exist in the data, all of which cannot be captured
by the covariates (see Madise et al., 1999).
The e¤ects of f0(t); f1 and f(t) are estimated using second-order ran-

dom walk prior, and Markov random �eld priors for fstr(s). The analysis
was carried out using BayesX-version 0.9 (Brezger et al. 2002), a software
for Bayesian inference based on Markov Chain Monte Carlo simulation tech-
niques. The sensitivity of the e¤ects to choice of di¤erent priors for the
non-linear e¤ects (p� splines) and the choice of the hyperparameter values
a and b are investigated.
Previous studies, for example, Berger et al. (2002), have shown that

breastfeeding is an important factor. In order to assess its e¤ect, a time-
varying indicator variable (see Kandala, 2002), that takes the value 1 in
the months a child is breastfed, and 0 otherwise, is generated. In addition,
temporal and spatial variations in the determinants of child mortality are also
assessed. Common choices for discrete survival models are the grouped Cox
model and probit or logit models. For this study, probit model for discrete
survival data is used because binary response models (see equation 3) can
be written equivalently in terms of latent Gaussian utilities, which lead to
very e¢ cient estimation algorithms. In addition, since survival time in the
DHS data set is recorded in months and the longest observation time for this
study is limited to 60 months, the data naturally contain a high amount of
tied events. A constant hazard within each month is assumed.
At the exploratory stage, a probit model with constant covariate e¤ects

(M1) for the e¤ects of breastfeeding and mother�s age are �tted with a view
to compare them to the dynamic probit models (M2).
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4.4 Results

4.4.1 Fixed e¤ects

The estimates of posterior odds ratio of the �xed e¤ect parameters for under-
�ve mortality in Nigeria (Model 2) together with their standard errors and
quantiles are presented in Table 3. Results indicate that children living in
urban areas at lower risk of dying than children living in rural areas (posterior
odds ratio 0.54 with 2.5%- and 97.5% quantiles (0.38 and 0.83, respectively)
below 1 - indicating that the e¤ect is statistically signi�cant. The results
also show that a short birth interval signi�cantly reduces a child�s chances
of survival, as children with longer preceding birth interval were at lower
risk of dying (posterior odds ratio 0.71). Children whose mothers had at
least one antenatal visit were at lower risk of dying (posterior odds ration
0.57) and the e¤ect being statistically signi�cant. Lack of at least primary-
level education raises mortality risk signi�cantly (posterior odds 1.51). The
other �xed variables didn�t show any signi�cant association with the risk of
under-�ve mortality.
The children of single mothers were at higher risk of dying (posterior odds

ratio 1.27) compared to children whose mothers were married; both quantiles
were positive, and therefore the relationship was signi�cant. Remarkably, the
larger the household size, the lower the risk of the children dying. Children
living in medium-size households (posterior odds ratio 0.99), and those living
in large-size households (posterior odds ratio 0.96), were at lower risk of dying
compared to children living in small-size households; both relationships had
positive quantiles and were therefore signi�cant.

4.4.2 Baseline e¤ects

The estimated nonlinear e¤ect of child�s age (baseline time) obtained from
the Bayesian p-splines are shown in Figure 2(a). The posterior means of
log-odds are presented within 80% & 95% credible intervals, and show that
starting from a comparably high level in the �rst month, the baseline e¤ect
remains more or less high until about three years (36 months) and declines
thereafter. The peaks at months 24 and 36 may re�ect a �heaping� e¤ect
from the large number of deaths being reported at these times.
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4.4.3 Time-varying e¤ects

Figure 2b) displays the time-varying e¤ect of breastfeeding, and indicates
that breastfeeding is on average associated with lower risk of mortality within
the �rst 2 years (24 months). Given the wide range of the 80%& 95% credible
region at the end of the observation period (most likely due to fewer numbers
of cases), the results beyond 24 months should be interpreted with caution.

4.4.4 Nonlinear e¤ects

Figure 2c) shows the non-linear time-varying e¤ect of mother�s age at birth
of the child. Mortality risk increases with age of mother and more strongly
so after age 35.

4.4.5 Spatial e¤ects

Posterior means of the estimated residual spatial states-e¤ects on under-
�ve mortality are presented in Figure 1c). This map shows a strong spatial
pattern, which suggests that survival chances of children under-�ve years of
age are highest within the North Western (Sokoto, and Kebbi) and South
Western (Lagos) regions compared to the other regions. On the other hand,
the survival chances of children under-�ve years are lowest among children
from Jigawa, Taraba, Delta, Rivers and Adamawa states compared to the
children from the rest of the states. A comparison between the under-�ve
mortality rates (Table 1 and Figure 1b)) and the estimated odds ratio (Figure
1c)) reveals the emergence of a clear spatial pattern of under-�ve mortality
risk. These spatial e¤ects could therefore be interpreted as representing the
cumulative e¤ect of unidenti�ed or unmeasured additional covariates that
may re�ect impacts of environmental and socio-cultural factors. Thus, failure
to take into consideration the posterior uncertainty in the spatial location
(states or districts) would invariably lead to an overestimation of the precision
in predicting childhood mortality risks in unsampled districts.

5 Discussion and Conclusion

Available statistics suggest that child mortality levels in Nigeria exhibit wide
geographic disparities (NPC, 2000; NPC, 2004), with the northern regions
and rural areas generally having higher childhood mortality rates compared
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to the southern regions and urban areas respectively. While the focus of pre-
vious studies in Nigeria have mainly been on e¤ect of individual and house-
hold factors in explaining childhood mortality di¤erences in the country, they
have largely neglected the impact of small area variations and community-
level variables (see Iyun, 1992; Adetunji, 1994; Folasade, 2000; NPC, 2004).
The aim of the present study was to highlight the regional- and district-

level variations in under-�ve mortality in Nigeria, while improving current
knowledge of district-level socio-economic and demographic determinants
(thereby warranting the inclusion of a geographic location [districts] covari-
ate).
After controlling for the spatial dependence in the data, most of the

covariates associated with under-�ve mortality in the �xed part of the model
were found to have e¤ects in the expected directions.
The time-varying e¤ects of breastfeeding emphasize the importance of

breastfeeding, which is widely believed to be the most bene�cial source of
infant nutrition for the attainment of health and well-being of the infant
(Weimer, 2001). Results of this study show a lowered risk of mortality asso-
ciated with breastfeeding within the �rst 2 years. The results for the period
after 2 years do not provide reliable information on the dynamic e¤ect of
breastfeeding due, mainly, to few cases. Results of the nonlinear e¤ect of
mother�s age at the birth of the child are in the expected direction, empha-
sizing the risk associated with younger motherhood (also seen in Alam, 200)
and childbirth at older ages (see Hobcraft et al., 1985).
The estimated residual spatial e¤ects for under-�ve mortality in Figure

1c) show clear di¤erences between the signi�cantly better survival chances
of children in the North West (Sokoto, and Kebbi) and South West (La-
gos) regions compared to the North East (Adamawa, Taraba, Yobe, Borno),
South South (Delta, Rivers, Akwa Ibom) and South East (Enugu) regions.
These state patterns are similar to analysis of poverty in Nigeria in which
the Northeast zone had the highest poverty incidence with 67.3 per cent,
followed by the Northwest with 63.9 per cent; the South South zone had the
highest poverty rates (55 percent) among the southern states, while the low-
est poverty rates were recorded in the South East at 34.2 per cent, followed
by Southwest with 43.0 per cent (National Bureau of Statistics, 2005).
While some of these e¤ects have been shown using traditional parametric

methods, using Bayesian geo-additive models uniquely shows subtle di¤er-
ences when examining small-area spatial e¤ects. Though the spatial e¤ects
do not show causality, careful interpretation could identify latent and unob-
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served factors that directly in�uence mortality rates. This geographic semi-
parametric approach therefore appears to be able to discern subtle in�uences
of the determinants, and identi�es district-level clustering of under-�ve mor-
tality.
The variation in the probability of childhood survival in Nigeria is spa-

tially structured. This implies that adjusted mortality risks are similar among
neighbouring states or districts, which may partly be explained by general
health care practices, similar prevalence of common childhood diseases, and
the residual spatial variation induced by variation in unmeasured district-
speci�c characteristics.
It is also our hope that the results presented here assist policy makers

in evaluating and designing programme strategies needed to improve child
health services, and reduce childhood mortality levels in Nigeria.
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Table 1: Under-�ve mortality rates (per 1000 live births) across districts, Nigeria (1999-2003)
(* indicates imputed values)

North Central All 172
1 Plateau 65*
2 Benue 112*
3 Kogi 131
4 Kwara 96*
5 Niger 202
6 Abuja (FCT) 123*

North East All 270
7 Taraba 132*
8 Adamawa 270*
9 Borno 262
10 Bauchi 278*
11 Yobe 299

North West All 264
12 Jigawa 263*
13 Kano 266
14 Kebbi 240
15 Kaduna 221
16 Katsina 222
17 Sokoto 304*

South East All 92
18 Anambra 54*
19 Enugu 192
20 Abia 126
21 Imo 98*

South South All 187
22 Cross River 136*
23 Akwa Ibom 154*
24 Rivers 242*
25 Delta 117*
26 Edo 134*

South West All 101
27 Lagos 101
28 Oyo 52
29 Osun 86*
30 Ogun 124
31 Ondo 118*

National 218
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Table 2: Descriptive statistics of covariates used in the analysis, Nigeria DHS, 2003.

Variable Level Frequency (%) Coding
Place of residence Urban 2118 (35%) 1

Rural 3911 (65%) -1 (ref)

Sex Male 3062 (51%) 1
Female 2967 (49%) -1 (ref)

Preceding Birth Interval < 25 months 3266 (58%) -1 (ref)
25+ months 2326 (42%) 1

Mother�s age at birth of child < 20 years 264 (4%) 1
20 - 35 years 5765 (96%) -1 (ref)

Antenatal visits during pregnancy At least one visit 2337 (64%) 1
No visit 1339 (36%) -1 (ref)

Place of delivery Hospital 2094 (35%) 1
Home/other 3878 (65%) -1 (ref)

Asset Index 1st quantile 970 (16%) 1
2nd quintile 2332 (39%) 2
3rd quintile 1322 (22%) 3
4th quintile 1405 (23%) -1 (ref)

Mother�s education No educ 3033 (50%) 1
At least primary 2966 (50%) -1 (ref)

Partner�s education No educ 2343 (40%) 1
At least primary 3501 (60%) -1 (ref)

Marital status Single 483 (8%) 1
Married 5546 (92%) -1 (ref)

Household size Large size 1724 (29%) 1
Medium size 2927 (48%) 2
Small size 1378 (23%) -1 (ref)
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Table 3: Posterior Odds ratio of the �xed e¤ect parameters for under-�ve mortality in Nigeria
Model 2:

Variable Level Odds Ratio 2.5% quantile 97.5% quantile

Residence Urban 0.54 0.38 0.83

Sex Male 1.08 0.83 1.40

Preceding 25+ months 0.71 0.55 0.94
Birth Interval

Antenatal visits At least 0.57 0.40 0.77
during pregnancy one visit

Place of delivery Hospital 0.95 0.68 1.40

Asset Index 1st quintile 0.86 0.55 1.23
2nd quintile 1.09 0.78 1.54
3rd quintile 0.93 0.64 1.37

Mother�s education None 1.51 1.06 2.25

Partner�s education None 0.76 0.54 1.20

Marital status Single 1.27 0.66 2.47

Household size Medium 0.99 0.67 1.68
Large 0.96 0.64 1.51
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Figure 1: Maps of Nigeria with crude and estimated mortality indicators

a) Nigeria: location of the 36 states/districts b) Raw under-�ve mortality by districts
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c) Estimated posterior means (log-odds) of spatial e¤ects
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Figure 2: Estimated posterior mean log-odds of death risk with 80% and 95% credible intervals)

a) Nonlinear e¤ect of baseline time b) Time-varying e¤ect of breasfeeding
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c) Non-linear e¤ect of mother�s age at child�s birth
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